

Voluntary Emission Reductions in Rice Management Systems – California Module

Version 1.0

Prepared by:

With support from

Environmental Defense Fund California Rice Commission

Applied Geosolutions, LLC

May 2013

© 2013 American Carbon Registry at Winrock International. All rights reserved. No part of this publication may be repro-duced, displayed, modified or distributed without express written permission of the American Carbon Registry. The sole permitted use of the publication is for the registration of projects on the American Carbon Registry. For requests to license the publication or any part thereof for a different use, write to:

American Carbon Registry c/o Winrock International 2451 Crystal Drive, Suite 700 Arlington, Virginia 22202 USA acr@winrock.org

1	REGIC	NAL CALIBRATION MODULE FOR PROJECT ACTIVITIES IN	
CA	LIFORN	NIA	3
	1.1.1	Step 1 - Definition of Included Project Activities	3
	1.1.2	Step 2 - Rice Growing Region	4
	1.1.3	Step 3 - Development of performance standard	4
	1.1.4	Step 4 - Identification of Critical and Non-Critical Management	
	Param	eters	5
	1.1.5	Step 5 - Structural Uncertainty Deduction	6
	1.1.6	Step 6 - Template .dnd input file	8
2	REFE	RENCES	11

- 1 The outline of this Regional Calibration Module follows the steps as required in the
- 2 parent methodology Voluntary Emission Reductions in Rice Management Systems
- 3 (http://americancarbonregistry.org/carbon-accounting/carbon-accounting/emission-
- 4 <u>reductions-in-rice-management-systems</u>). This module must be used in conjunction
- 5 with the parent methodology. All definitions and acronyms outlined in the parent
- 6 methodology are relevant for this module.

7 1 Regional Calibration Module for Project Activities in California

- 8 California is the second largest rice-producing state in the United States, producing
- 9 rice on approximately 585,000 acres (236,741 ha) and contributing \$774 million to the
- 10 state's economy. 1 Before 1990, in California, the most common post-harvest straw
- 11 management option was burning. However, burning was significantly phased down
- between 1991 and 2000, and is now only practiced on a limited and highly regulated
- basis for disease control purposes. Currently, the most commonly used techniques
- 14 for straw management on rice fields, listed in order of degree of use, are (UCCE,
- 15 2007): (1), chopping and/or disking, followed by winter-flooding and sometimes
- rolling, (2) chopping and/or disking without winter-flooding or (3) burning in the fall
- 17 and/or spring for disease control. In 2007, the University of California Cooperative
- 18 Extension estimated that rice straw burning occurred on 13% of the area, winter
- 19 flooding on 60% of the area, and incorporation without winter flooding on the 27% of
- 20 the area. Straw burning events must be scheduled in the Baseline Scenario as they
- 21 occur according to surveys and historical data. Straw burning during the Crediting
- 22 Period must follow all appropriate laws in the jurisdiction in which the Project is
- 23 located. It is estimated that 3 to 5% of the rice acreage has straw baled for use later
- 24 for various purposes (California Rice Commission 2009).
- 25 This methodology allows Project Proponents to voluntarily generate CH₄ emission
- 26 reductions by (1) removing rice straw from the field after harvest and before winter
- 27 flooding, (2) replacing water seeding with dry seeding, and (3) early drainage at the
- 28 end of the growing season. Reducing winter flooding acreage in the California Rice
- 29 Growing Region cannot be used for crediting under this version of the module.²
- 30 1.1.1 Step 1 Definition of Included Project Activities
- 31 The following Project Activities are included in this Regional Calibration Module and
- do not have to be validated in a GHG Project Plan.

¹ Planted acres for 2011, all rice varieties, from *California Agricultural Statistics: 2011 Crop Year.* USDA National Agricultural Statistics Service - California Field Office. Available at http://www.cdfa.ca.gov/statistics/ or www.nass.usda.gov/ca.

² Future versions may allow reduced winter flooding if it can be demonstrated that impacts on waterfowl habitat are neutral or positive.

	Project Activity	Rice Growing Region
ACT1	Removal of straw after harvest (e.g., by baling)	California
ACT2	Dry seeding	California
ACT3	Early drainage	California

33

34

35

36

37

- Note that it is allowed to combine Project Activities. Table 1 provides definitions for key terminology related to these Project Activities.
- Table 1. Definitions of eligible Project Activities for the California Sacramento and San Joaquin Valley Rice Growing Region.

Project Activity	Definition
Straw baling and removal	After harvest, rice straw residue is traditionally left on agricultural fields. However, rice straw can be removed by baling. Baled straw can be sold even though the market is small. Rice straw can be used for erosion control, animal bedding, as an alternative feed for cow and calf producers (DANR, publication 8425), or for other purposes noted in 8.3.2 of the parent methodology.
Dry seeding	A seeding method that involves broadcasting or drilling dry seeds into dry or moist, non-puddled soil. Dry seeding often allows for quicker land preparation and reduces the irrigation water required for crop establishment. Dry seeding can occur through spreading seeds onto the soil surface and transferring soil on top of the seeds or by drilling seeds into a prepared seedbed, a practice known as "drill seeding". Alternatively, seeding normally occurs by distributing seeds on inundated fields using small airplanes, a practice known as "water seeding".
Early drainage	Early Drainage is defined as terminating water applications and draining a field at least 5 days earlier than the drainage date under conventional management ("Conventional Drainage Date"). Since there is not one single procedure to determine the Conventional Drainage Date that is used by all producers across all Rice Growing Regions, the procedure to set the Conventional Drainage Date as used by a specific participating grower shall be recorded in the GHG project plan.

38

- 39 1.1.2 Step 2 Rice Growing Region
- 40 This regional calibration module is valid within California.
- 41 1.1.3 Step 3 Development of performance standard
- 42 A performance standard is proposed for ACT1 removal of straw after harvest and
- 43 ACT 2 dry seeding.
- No legal requirements exist that relate to removal of straw after harvest or dry
- 45 seeding. As a consequence, these Project Activities will be surplus to applicable
- 46 regulations.

³

³ This methodology does not endorse a specific procedure to set the Conventional Drainage Date or the early drainage date. Producers are advised to use the judgment of extension staff or other experts to determine a drainage date that is appropriate for their specific circumstances.

- 47 Based on discussions with industry experts, including P. Buttner (CalRice), R.
- 48 Mutters, L. Espino, and G Nader (University of California Cooperative Extension), the
- 49 following baseline adoption rates are estimated.
 - A continuous flooding and water seeded regime is estimated to be used on over 96% of the acreage in California. As a consequence, the adoption of dry seeding is estimated to be less than 4%.
 - The current estimate for baling adoption in California is on average 4% of California rice acres per year. This percentage fluctuates slightly annually with various straw markets.
- Both ACT1 and ACT2 have a baseline adoption rate of less than 5%, and therefore
- pass the common practice test. No Project-specific demonstration of additionality is
- 58 required.

50

51

52

53

54

55

- 59 1.1.4 Step 4 Identification of Critical and Non-Critical Management Parameters
- The pre-approved Project Activities in this methodology potentially affect (1) the
- duration and frequency of the winter flooding period, (2) post-harvest rice straw
- 62 residue management, and (3) seeding practices. The potential critical input
- parameters are outlined in Table 2.

Table 2. Critical (C) and Non Critical (NC) Management Parameters for Project Activities included in this module.

		Project Activity	
	ACT1	ACT2	ACT 3
Management Parameter	Removal of	Dry seeding	Early
	straw after		drainage
	harvest		
Harvesting date	NC	NC	С
Fraction of residues left after harvest	С	NC	NC
Crop residue management (tillage) date	С	NC	NC
Crop residue management (tillage) method	С	NC	NC
Crop residue burning date (if burning was	С	NC	NC
present)			
Frequency of winter flooding	C⁴	NC	NC
Start Date of the winter flooding period (if	С	NC	NC
any)			
End Date of the winter flooding period (if any)	С	NC	NC
Spring fertilization amount	С	С	NC
Spring fertilization date	С	С	NC
Spring fertilization application method	С	С	NC
Pre-plant field preparation (tillage) date	NC	С	NC
Pre-plant field preparation (tillage) method	NC	С	NC
Planting date	NC	С	NC
Flooding date	NC	NC	NC
Fertilization amount during growing season	С	NC	NC
Fertilization date during growing season	С	NC	NC
Fertilization application method during	С	NC	NC
growing season			
Draining date	NC	NC	С

1.1.5 Step 5 - Structural Uncertainty Deduction

Nine different annual fluxes of CH₄ emissions were measured for a number of different management scenarios (Horwath et al., 2011, preliminary unpublished results). The same management scenarios were modeled using the DNDC model. These scenarios represent the Project Activities included in this Regional Calibration Module for California. Results from this exercise are summarized in Table 3. Further details can be found in EDF (2011).

⁴ ACR will monitor the adoption of baling and take corrective action if winter flooding rates are significantly negatively affected, to ensure habitat for waterfowl is maintained.

Table 3. Modeled and measured CH₄ fluxes from field trials in California. Data reproduced with permission from EDF (2011).

Observation				Modeled	Measured
nr.	Site	Treatment	Year	[kg C ha ⁻¹ yr ⁻¹]	[kg C ha ⁻¹ yr ⁻¹]
		Drill seeded in a			
1	Biggs	stale seedbed	1	126.9	199.9
		Water seeded in			
		a conventional			
2	Biggs	seedbed	1	366.0	294.7
		Water seeded in			
3	Biggs	a stale seedbed	1	260.0	335.9
		Burned residue			
		and winter			
4	Bossio	flooded	1	33.3	13.7
		Incorporated			
		residue and			
5	Bossio	winter flooded	1	69.8	58.4
		Burned residue			
		and winter			
6	Maxwell	flooded	1	58.7	26.6
		Burned residue			
		and winter			
7	Maxwell	flooded	2	82.7	55.8
		Residue			
		incorporated and			
8	Maxwell	winter flooded	1	61.3	122.3
		Residue			
		incorporated and			
9	Maxwell	winter flooded	2	127.1	187.1
		Residue			
		incorporated and			
		not winter			
10	Maxwell	flooded	1	50.8	36.6
		Residue			
		incorporated and			
		not winter			
11	Maxwell	flooded	2	90.9	136.7

77 The formula for Structural Uncertainty is:

 $u_{struct} = s\sqrt{2n(1-\rho)} \cdot t_{inv}(0.90, k)$

78 Where:

76

74 75

 u_{struct} = Absolute deduction for structural uncertainty for the whole Project Area [kg CO₂-eq]

s = 51.3 (estimated based on the 9 pairs of measured and simulated fluxes presented in Table 3)

 ρ = 0.06 (estimated based on the daily flux data of the fields and seasons as presented in Table 3)

k = 9

n = Project Area size in ha

 $t_{inv}(0.90, k) = 1.36 \text{ for } k=11$

79

- The addendum "DNDC structural uncertainty deduction factors for ACR methodology
- Voluntary Emission Reductions in Rice Management Systems, v1.0," posted on the
- 82 ACR website, summarizes the results of this equation. The structural uncertainty
- deduction factor given in that table shall be applied on a field-by-field basis.

Table A-1. Structural uncertainty deductions for projects within California

- 85 See <a href="http://americancarbonregistry.org/carbon-accountin
- 86 <u>accounting/emission-reductions-in-rice-management-systems</u> for the current version
- 87 of this table.

88

89

84

1.1.6 Step 6 - Template .dnd input file

- 90 The following table is a template .dnd input file with an indication of fixed default
- 91 values or if values must be added by Project Proponents. The input file is set up to
- 92 represent three years.

93 Table 4. Template dnd input file

Line	DND Parameter	Selection procedure for value
1	Input_Parameters:	
2		
3	Site_data:	leave blank
4	Simulated_Year:	24
5	Latitude:	Use latitude of project area
6	Daily_Record:	0
7		leave blank
8	Climate_data:	0
9	Climate_Data_Type:	Fix at 1
10	NO3NH4_in_Rainfall	1
11	NO3_of_Atmosphere	0.06
12	BaseCO2_of_Atmosphere	Fix at 350
13	Climate_file_count	leave blank
14	1	no default
15	Climate_file_mode	1
16	CO2_increase_rate	0
17		
18	Soil_data:	0
19	Soil_Texture	Empirical soil measurements

Line	DND Parameter	Selection procedure for value
20	Landuse_Type	2
21	Density	Empirical soil measurements
22	Soil_pH	Empirical soil measurements
23	SOC_at_Surface	Empirical soil measurements
24	Clay_fraction	Empirical soil measurements
25	BypassFlow	Fix at 0
26	Litter_SOC	Fix at 0.01
27	Humads_SOC	Fix at 0.003
28	Humus_SOC	Fix at 0.987
29	Soil_NO3(-)(mg N/kg)	Fix at 0.5
30	Soil_NH4(+)(mg N/kg)	Fix at 0.05
31	Moisture	Fix at 0.405
32	Temperature	no default
33	Field_capacity	Empirical soil measurements
34	Wilting_point	Empirical soil measurements
35	Hydro_conductivity	Empirical soil measurements
36	Soil_porosity	Empirical soil measurements
37	SOC_profile_A	provide soil information
38	SOC_profile_B	provide soil information
39	DC_litter_factor	Fix at 1
40	DC humads factor	Fix at 1
41	DC_humus_factor	Fix at 1
42	Humad CN	Fix at 10
43	Humus_CN	Fix at 10
44	Soil_PassiveC	Fix at 0
45	Soil_microbial_index	Fix at 1
46	Highest_WT_depth	Fix at 9.99
47	Depth_WRL_m	Fix at 0.3
48	Slope	0
49	Use_ION_file	0
50		
51	Crop_data:	0
52	Rotation_Number	no default
	REPEAT FROM 20 YEARS BEFORE STA YEARS AFTER START CREDITING PERI	
53	Rotation_ID	no default
53 54	Totalyear	no default
55	Years_Of_A_Cycle	no default
56	YearID_of_a_cycle	no default
57	Crop_total_Number	no default
58	Crop_ID	no default
59	Crop_Type	no default
60	Plant_time	Exact date required, for example 5 1
00	riani_unie	Livaci date required, for example 5.1

Line	DND Parameter	Selection procedure for value			
61	Harvest_time	Exact date required, for example 9 11			
62	Year_of_harvest	1			
63	Ground_Residue	1 if no baling is applied, otherwise 0.25 or empirical measurement			
64	Yield	Exact data required			
65	Rate_reproductive	0.044			
66	Rate_vegetative	0.015			
67	Psn efficiency	0.4			
68	Psn_maximum	47			
69	Initial biomass	12.5			
70	Cover_crop	0			
71	Perennial_crop	0			
72	Grain fraction	0.6			
73	Shoot fraction	0.3			
74	Root_fraction	0.1			
75	Grain_CN	30			
76	Shoot CN	65			
77	Root_CN	65			
78	TDD	3000			
79	Water_requirement	508			
80	Max LAI	6			
81	N fixation	1.05			
82	Vascularity	1			
83	Tillage_number	Supply number of tillage events			
	REPEAT FOR ALL TILLAGE EVENTS:				
84	Tillage_ID	Index value running from 1 until the number of tillage events			
85	Month/Day/method	Exact date required, for example 4 23 3			
	(end of tillage event enumeration)				
94	Fertil_number	Supply number of fertilization events			
	REPEAT FOR EACH FERTILIZATION EVENT:				
95	fertilization_ID	1			
96	Month/Day/method	Exact date required, for example 4 30 1			
97	Depth	15			
98	Nitrate	0			
99	AmmBic	0			
100	Urea	0			
101	Anh	130			
102	NH4NO3	0			
103	NH42SO4	0			
104	NH4HPO4	0			
105	Release_rate	1			

Line	DND Parameter	Selection procedure for value	
106	Inhibitor_efficiency	0	
107	Inhibitor_duration	0	
108	Urease_efficiency	no default	
109	Urease_duration	no default	
	(end of fertilization event enumeration)		
141	Manure_number	0	
142	Plastic_applications	no default	
143	Ventilation	no default	
144	Weed_number	no default	
145	Weed_Problem	no default	
146	Flood_number	3	
147	Leak_type	1	
148	Water_control	0	
149	Leak_rate	0.08	
	REPEAT FOR EACH FLOODING EVENT:		
150	Flooding_ID	1	
151	Flood_Month/Day	Exact date required, for example 1 1	
152	Drain_Month/Day	Exact date required, for example 1 31	
153	Water_N	0	
154	Shallow_flood	0	
	(end of flooding event enumeration)		
168	Irrigation_number	Fixed at 0	
169	Irrigation_type	Fixed at 0	
170	Irrigation_Index	Fixed at 0	
171	Grazing_number	Fixed at 0	
172	Cut_number	Fixed at 0	
	(end of crediting year enumeration)		
435	Crop_model_approach 0	-	

94

95

2 References

- Agriculture and Natural Resources (ANR) of the University of California 2010. Rice
 Producers' Guide to Marketing Rice Straw. ANR Publication 8425.
- 98 California Rice Commission. 2009. Environmental and conservation balance sheet for 99 the California rice industry. Available online at
- 100 http://calrice.thewebhounds.com/Environment/Balance+Sheet/Chapter+4+-
 101 http://calrice.thewebhounds.com/Environment/Balance+Sheet/Chapter+4+-
 101 http://calrice.thewebhounds.com/Environment/Balance+Sheet/Chapter+4+-
- Environmental Defense Fund (EDF) 2011. Final report for NRCS project 69-3A75-7-87. Creating and Quantifying Carbon Credits from Voluntary Practices on Rice Farms in the Sacramento Valley: Accounting for Multiple Benefits for Producers

and the Environment.